The Navier-Stokes equations and backward uniqueness
نویسنده
چکیده
We consider the open problem of regularity for L3,∞-solutions to the Navier-Stokes equations. We show that the problem can be reduced to a backward uniqueness problem for the heat operator with lower order terms. 1991 Mathematical subject classification (Amer. Math. Soc.): 35K, 76D.
منابع مشابه
Backward uniqueness of stochastic parabolic like equations driven by Gaussian multiplicative noise
One proves here the backward uniqueness of solutions to stochastic semilinear parabolic equations and also for the tamed Navier–Stokes equations driven by linearly multiplicative Gaussian noises. Applications to approximate controllability of nonlinear stochastic parabolic equations with initial controllers are given. The method of proof relies on the logarithmic convexity property known to hol...
متن کاملStochastic Navier-Stokes Equations with Artificial Compressibility in Random Durations
The existence and uniqueness of adapted solutions to the backward stochastic Navier-Stokes equationwith artificial compressibility in two-dimensional bounded domains are shown byMintyBrowder monotonicity argument, finite-dimensional projections, and truncations. Continuity of the solutions with respect to terminal conditions is given, and the convergence of the system to an incompressible flow ...
متن کاملThe Navier-stokes Equations in Nonendpoint Borderline Lorentz Spaces
It is shown both locally and globally that Lt (L 3,q x ) solutions to the three-dimensional Navier-Stokes equations are regular provided q 6= ∞. Here L x , 0 < q ≤ ∞, is an increasing scale of Lorentz spaces containing Lx. Thus the result provides an improvement of a result by Escauriaza, Seregin and Šverák ((Russian) Uspekhi Mat. Nauk 58 (2003), 3–44; translation in Russian Math. Surveys 58 (2...
متن کاملBackward Stochastic Navier - Stokes Equations in Two Dimensions
There are two parts in this dissertation. The backward stochastic Lorenz system is studied in the first part. Suitable a priori estimates for adapted solutions of the backward stochastic Lorenz system are obtained. The existence and uniqueness of solutions is shown by the use of suitable truncations and approximations. The continuity of the adapted solutions with respect to the terminal data is...
متن کاملOptimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کامل